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INTRODUCTION

Recent work on obtaining exponential convergence for three-dimensional solutions to the

spatially and angularly continuous monoenergetic transport equation with isotropic scattering

using the reduced source method1,2 was promising.3  The method, however, used two separate

estimates of the scalar flux, a Legendre expansion (in the spatial variables) and a quadrature of

the angular flux.  This introduced an inconsistency that may have lead to some convergence

problems.  To remove this inconsistency and provide a fairer test of the combined reduced

source/Monte Carlo method, the method was applied to estimate the coefficients of a Legendre

expansion of the solution of the discrete ordinates equations.  In this case, no supplementary

approximations were required.

THE REDUCED SOURCE METHOD

The monoenergetic neutral particle discrete ordinates equations in a homogeneous

medium with isotropic scattering and no internal source can be written4

with boundary condition

Here, m
ˆ  and mt  represent the ordinates and weights of the discrete ordinates quadrature set.
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Given some estimate )(~ rmψ  of the exact solution )(rmψ  of the discrete ordinates

equations, the difference )(~)( rr mm ψ−ψ  is defined as the angular flux residual, )(rmψ∆ .  Using

)()(~)( rrr mmm ψ∆+ψ=ψ  in Eqs. (1) and (2) yields an equation for the angular flux residual:

with boundary condition

In the reduced source method, Eq. (1) is solved for an initial estimate ),(~ 0 rmψ  which is then used

on the right-hand sides of Eqs. (3) and (4) for the first order residual ).(1 rmψ∆   Using the

resulting estimate )()(~)(~ 10 rrr mmm ψ∆+ψ=ψ  on the right-hand sides of Eqs. (3) and (4) provides

an equation for the second order residual )(2 rmψ∆  and a prescription for an iterative strategy.

The angular flux estimate after n such iterations is ).()(~)(~
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MONTE CARLO SCORING AND SAMPLING

In the present application of the method, the discrete ordinates fluxes )(rmψ  are

expanded in Legendre polynomials as follows:

where the coefficients ijkma ,  are defined as

Using a generalized track length estimator, a particle track of length h along ray m contributes a

score
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to the coefficient ijkma ,  (w is the particle’s weight).  The angular quadrature weight mt  appears in

the denominator because the track length estimator is used to estimate weighted integrals of the

scalar flux rather than the angular flux.

The zero’th stage of the reduced source solution procedure, corresponding to an

approximate solution of Eq. (1), is treated as a “conventional” (non-adaptive) Monte Carlo

problem, except that the particles are constrained to travel along the pre-selected discrete

ordinates.  In subsequent (adaptive) stages, particles are started according to the residual sources

),(rn
mR  defined as the right-hand sides of Eqs. (3) and (4), which together describe a system with

a volume source and a source on each surface.  The solution to these equations is obtained by

solving the problem for each source independently and adding those solutions.

Rather than sampling from the true (residual) source distribution ),(rn
mR  which may be

positive or negative, particles are sampled uniformly in the appropriate phase space (uniformly in

the volume and isotropically in angle for the volume source; uniformly on the surface and

isotropically over the inward-directed half of the angle set for the surface sources).  The particle

weight w, which is the ratio of the true density to the sampled density, is )(rn
mRV  for the volume

source and )(2
1

s
n
mRA r  for the surface sources.  The particle weight can be negative.

As in deterministic discrete ordinates methods, the incoming fluxes must be properly

normalized to preserve the physical source strength.  In the present application, this is

accomplished by using a properly normalized value for )( smS r  in Eq. (4).
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RESULTS

The method was tested on a homogeneous three-dimensional slab of dimensions

1 cm × 106 cm × 106 cm and material parameters Σt = 1 and Σs = 0.5.  The external source of

Eq. (2) was ,),,0()( mmsm zySS µ==r  .0>µm   Figure 1 shows the results of the solution of the

S8 equations using a standard quadrature set, 560 000 particles per stage (except the zero’th, in

which only 80 000 particles were used), and Legendre expansions of order 10 in each direction

with no Legendre product terms in Eq. (5) [e.g., )1()1( 2
1

2
1110, −− Y

y
X
x

m PPa ].  For this simple

problem, Fig. 1 clearly shows exponential convergence of four different residuals and of two

estimates of the known source.  The difference between two Monte Carlo scalar fluxes (volume

midpoint and volume average) and those estimated by THREEDANT (Ref. 5) using the same S8

quadrature set are shown for verification.  For this problem, convergence was achieved after 10

adaptive stages in 75.1 minutes.
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Figure 1.  Exponential convergence of an S8 solution in a three-dimensional slab.  The

method reproduces the exact incoming flux to about 10–6 (face midpoint) and below 10–7 (face

average).  The method reproduces the THREEDANT approximate solution for the scalar flux to

about 10–4 (volume midpoint and volume average).  Residuals for these four values converge

exponentially to about 10–8.
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